If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12+2x+x^2=0
a = 1; b = 2; c = -12;
Δ = b2-4ac
Δ = 22-4·1·(-12)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*1}=\frac{-2-2\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*1}=\frac{-2+2\sqrt{13}}{2} $
| 1/2u=25 | | (2x×x)=210 | | 1.9+x=2.7 | | 27y=1 | | N+6=9x7 | | 2/3y-1/5(y-21/2)=51/3 | | h=15-4h | | 2(3x-2)-5=15-(x+3) | | 2(3x-2)-5=15-(x+3 | | 8^(x^2+2x-8)=64 | | a=7X4 | | 5(b-3)-2(b-1)=-6 | | X+(2x×x)=210 | | a=7.4 | | 44=4v | | 3g=-2(4g+11) | | R=r/12 | | 0.3/x=0.1 | | v=18+6+4 | | 2(-7)=d | | v=13+45 | | V=13+9x5 | | 2(-7)+7=y | | 21/x=8 | | 2(-14)+7=y | | 20=y/9 | | 3x+49=70 | | 2-x(4-5x)=6 | | xx67=17 | | -20x+12=Y | | 3g-8g+4=-5g | | xx35=17 |